Amazon cover image
Image from Amazon.com

Data science from scratch : first principles with Python / Joel Grus.

By: Material type: TextTextPublication details: Sebastopol, CA : O'Reilly Media, c2019.Edition: Second editionDescription: xvii, 384 pages : illustrations ; 24 cmContent type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISBN:
  • 9781492041139
Subject(s): DDC classification:
  • 005.7565 23 GRU
LOC classification:
  • QA76.73.P98 G78 2019
Contents:
Introduction -- A crash course in Python -- Visualizing data -- Linear algebra -- Statistics -- Probability -- Hypothesis and inference -- Gradient descent -- Getting data -- Working with data -- Machine learning -- k-Nearest neighbors -- Naive bayes -- Simple linear regression -- Multiple regression -- Logistic regression -- Decision trees -- Neural networks -- Deep learning -- Clustering -- Natural language processing -- Network analysis -- Recommender systems -- Databases and SQL -- MapReduce -- Data ethics -- Go forth and do data science.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Date due Barcode
Books Books Main Library General Stacks Non-fiction 005.7565 GRU (Browse shelf(Opens below)) 1 Available MUL24080134
Books Books Main Library General Stacks Non-fiction 005.7565 GRU (Browse shelf(Opens below)) 2 Available MUL24080135
Books Books Main Library General Stacks Non-fiction 005.7565 GRU (Browse shelf(Opens below)) 3 Available MUL24080136

Includes bibliographical references and index.

Introduction -- A crash course in Python -- Visualizing data -- Linear algebra -- Statistics -- Probability -- Hypothesis and inference -- Gradient descent -- Getting data -- Working with data -- Machine learning -- k-Nearest neighbors -- Naive bayes -- Simple linear regression -- Multiple regression -- Logistic regression -- Decision trees -- Neural networks -- Deep learning -- Clustering -- Natural language processing -- Network analysis -- Recommender systems -- Databases and SQL -- MapReduce -- Data ethics -- Go forth and do data science.

There are no comments on this title.

to post a comment.